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Executive Summary 

To determine the effect of horizontal curvature, vertical curvature, and guardrail on driver 

passing behavior, a combination of field data collection and a driving simulator in a controlled 

environment were used. Field sites were identified along areas of concern to the Alaska 

Department of Transportation and Public Facilities: 1) Parks Highway (Milepost 155–160), 

Seward Highway (Milepost 104–113), and Sterling Highway (Milepost 145.5–150.5). Data were 

collected in the form of video in one passing zone in each these segments (totaling 165 hours), 

processed, and used to inform the development of the driving simulator. Driving participant 

testing was conducted in a simulated environment that replicated the identified sections of the 

two-lane rural highway in the state of Alaska. 

The results of the field study showed that on all three highway segments (Parks, Seward, and 

Sterling), the average speed of passing vehicles was approximately 10 mph over the posted speed 

limit. The average initial speed of the vehicles being passed was approximately 2 mph over the 

speed limit. Standard deviations for both passing and impeding vehicles ranged from 3 mph to 7 

mph. This aspect to driver behavior has significant implications for design of passing zones, as 

the American Association of State Highway Transportation Officials (AASHTO) and Manual on 

Uniform Traffic Control Devices (MUTCD) standards assume that the passing vehicle’s speed 

does not exceed the posted speed limit. The field study revealed a significant number of “early 

start” and “late finish” passes, where a portion of the passing maneuver occurred outside of the 

designated passing area. The rate of early-start passes was higher for the Parks Highway 

segment, while the rate of late-finish passes was higher for the Seward Highway segment. Early-

start and late-finish passes tended to occupy the opposing lane for more time than passes that 

were compliant and occurred completely within the confines of the passing zone.  

Seventy-two participants were recruited and tested in the driving simulator at the Idaho Visual 

Performance Laboratory. The results of the simulator study showed that both horizontal and 

vertical curvature have significant effects on the characteristics of passing maneuvers including 

the speed of the passing vehicle, the total time and distance of the maneuvers, and the distance 

between the passing vehicle and the impeding vehicle at the initiation and termination of the 

maneuvers. Though geometry has an effect on passing choice and passing maneuver 

characteristics, it has no significant effect on safety outcomes of passes (in terms of total time to 

collision). Presence of guardrail does not affect the number of passes or the safety outcomes of 

passes but does affect the ability of drivers to avoid a collision when another vehicle is in their 

lane. Since a guardrail has a negative impact on safety (i.e., some would-be run-off-the-road 

crashes are converted to more severe head-on collisions), additional safety precautions such as 

signage (MUTCD 2B.28 and 2C.45) may be warranted.
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CHAPTER 1.  INTRODUCTION 

The Alaska Department of Transportation and Public Facilities (AKDOT&PF) and the 

University of Alaska Fairbanks (UAF) have identified a critical need to assess the current 

standards for passing zone requirements on two-lane highways in the context of horizontal and 

vertical alignment configurations. This project, which addresses that need, provides a better 

understanding of drivers’ passing behavior under varied geometric conditions and how degree 

and mix of curvature influence driver behavior. The project’s findings improve upon current 

American Association of State Highway Transportation Officials (AASHTO) guidelines and 

offer state Departments of Transportation (DOTs) better criteria for designing and evaluating 

geometric roadway configurations to improve the safety and efficiency of traffic operations. 

More specifically, this project seeks to improve the current standards on which the decisions to 

provide or not provide passing zones in a particular context are based. 

1.1.  Background 

On rural two-lane roadways, a passing maneuver occurs when one vehicle overtakes a slower-

moving vehicle by occupying the lane used by opposing traffic for some amount of time. For this 

passing maneuver to be accomplished, the driver of the faster vehicle must be able to see a 

sufficient distance ahead to make an informed and safe decision about whether there is enough 

distance and time to complete the passing maneuver without affecting the oncoming vehicle or 

the vehicle being passed. Since the passing maneuver requires both a transition into the opposing 

lane and then a return to the original lane of travel, additional sight distance is needed when 

compared with stopping sight distance. Drivers’ passing judgment can be influenced by complex 

and curvilinear geometric alignments (e.g., combined horizontal and vertical curves) along with 

the presence of guardrail. 

In 2008, more than 27% of fatal crashes occurred at horizontal curves (FHWA, 2010). Due to the 

predominance of horizontal curves on typical rural roads, a higher percentage of fatal curve-

related crashes occur on rural roads, particularly on two-lane roadways; the fatality rate on rural 

roads is typically more than twice the rate on urban roads (AASHTO, 2011). Of all fatal crashes 

that occur on two-lane rural highways, about 20% are head-on collisions, with passing being the 

main cause of this type of crash (Persaud et al., 2004).  

The Federal Highway Administration (FHWA) has reported that 25% of all fatal crashes 

occurring on two-lane rural highways are associated with horizontal curves (FHWA, 2014). This 

percentage is three times higher than the average crash rate of other U.S. highway systems, such 

as interstates and multilane highways. Fatal Analysis Reporting System (FARS) statistics 

indicate that 18% of head-on collisions occur on two-lane rural highway systems, and that 23% 

of all head-on crashes on two-lane rural highways occur when a driver is negotiating a horizontal 

curve (FHWA, 2016). A two-lane rural roadway with limited opportunities for drivers to execute 

passing maneuvers due to limited gaps between oncoming vehicles causes a reduction in 

capacity and level of service. A limited number of passing opportunities motivates some drivers 

to make risky passing attempts either late in a passing zone or on a portion of the road not 

intended for passing (see Figure 1.1). This safety concern increases on two-lane rural highways, 

which have varying geometric configuration (i.e., horizontal curves, vertical curves, compound 

curves, or a combination of these). 
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Figure 1.1 A pick-up truck making a passing maneuver in a “double-yellow” segment on the 

Parks Highway near Trapper Creek, Alaska 

In part, sight distance and passing requirements are affected by a persons’ ability to see an 

opposing vehicle and being able to be seen by the opposing vehicle, the driver of which is 

required to judge the speed and closing rate of the oncoming vehicle and make a defensive move 

if necessary. This passing maneuver is often considered one of the most complex maneuvers that 

can be made on a two-lane road or highway (McKnight & Adams, 1970), and the issue of sight 

and perception during passing maneuvers occurs on both horizontal and vertical curves. 

However, a road segment with too few opportunities for drivers to execute a passing maneuver 

causes lengthy platoons and a reduction in capacity and level of service. Lengthy platoons are of 

particular concern on roads in Alaska such as the Seward, George Parks, and Richardson 

highways, National Highway System routes that are predominantly two-lane rural highway 

systems and are the only connections between some rural communities. In addition to having 

dynamic horizontal and vertical curve combinations (changing curve geometries), these 

highways have very high traffic loads, particularly in the summer months, when the formation of 

platoons is quite common. Extended periods of daylight during summer and extended periods of 

darkness during winter also create problems that involve both sight and human behavior issues.  

Other factors that seem to affect available sight during a passing maneuver include the presence 

of guardrails, lighting conditions, amount of traffic, curve orientation, and the surrounding 

vegetation and landscape. The surrounding environmental, road, and weather conditions may 

affect a driver’s ability to identify whether a vehicle is in the opposing lane or the same lane, or 

the rate at which the vehicle is approaching. It is apparent that certain combinations of curve 

radius, length of curve, differences in grade, and type of transition design make it more difficult 

to judge the opportunities in which a passing maneuver is safe. It has generally been assumed 

that there are interactions between the safety effects of horizontal and vertical alignment 

combinations, but limited research exists to document these effects or demonstrate them in a 

form that can be used for safety prediction (FHWA, 2014).  

1.2.  Research Objective 

The objective of this research project was to examine how roadway geometry and roadside 

features such as guardrails affect driver passing maneuvers along rural two-lane highways. The 

main concerns addressed were how radius size, traffic level, and curve orientation (i.e., left 

versus right) affect passing and evasive maneuvers of drivers on horizontal and vertical curves. 
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The complexity of the myriad factors that contribute to the safety and efficiency of passing 

maneuvers makes the use of a driving simulator particularly advantageous. By controlling the 

driving environment, variables of most concern can be studied without being confounded by 

other, potentially less important, factors. 

Real-world highway sections in the State of Alaska were utilized as reference sources since 

safety concerns along these sections had previously been documented. These sections included:  

 Seward Highway (Milepost 104 to Milepost 113);  

 Parks Highway (Milepost 154 155 to Milepost 160); and  

 Sterling Highway (Milepost 145.5 to Milepost 150.5). 

This study was conducted in a virtual driving environment using a driving simulator and using 

passing maneuver data collected in the field. For the simulation, a model of the roadway 

alignment along with a standardized traffic scenario was created. Participants were hired to drive 

both northbound and southbound along the simulated alignments, and each participant drive was 

followed by a questionnaire which collected socioeconomic information and asked questions 

about the factors that influenced their passing decisions during the simulation exercise. 
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CHAPTER 2.  LITERATURE REVIEW 

The literature review focused on three broad sections involved with this research:  

 passing maneuvers on rural two-lane highways; 

 sight distance and no-passing zones; 

 geometric conditions and alignment as they relate to passing zones; 

 the driving environment and human factors; 

 roadside characteristics and configurations; and 

 driving simulators (i.e., evaluation of passing maneuvers in a virtual environment). 

2.1. The Passing Maneuver on Rural Two-Lane Highways 

On two-lane rural roads, the passing maneuver is accomplished by the faster vehicle occupying 

the lane used by opposing traffic for some amount of time. For passing to be accomplished 

without interfering with an opposing vehicle, the passing driver needs to be able to see a 

sufficient distance ahead such that an informed and safe decision can be made about whether 

there is ample distance and time to complete the passing maneuver without impeding the 

oncoming vehicle or the vehicle being overtaken. Since the passing maneuver requires a 

transition into the oncoming lane, overtaking the slower-moving vehicle in the oncoming lane, 

and then a transition back into the appropriate lane of travel, more sight distance is needed to 

pass than to stop. The following assumptions, as described in AASHTO, are made concerning 

driver behavior when assessing operational efficiency of passing maneuvers (Glennon, 1970; 

Hassan et al., 1996): 

1. the overtaken vehicle travels at a uniform speed; 

2. the passing vehicle has reduced speed and trails the overtaken vehicle as it enters a 

passing area; 

3. the driver spends some amount of time to perceive the clear passing area and to initiate 

the passing maneuver, i.e., a delayed start; 

4. the passing vehicle accelerates during the maneuver, occupies the left lane at a speed 

12 mph (miles per hour) higher than the vehicle being overtaken;  

5. the perception-reaction time of a driver deciding to abort a pass and the headway between 

passing and passed vehicles during an aborted pass are 1 second; and 

6. the vehicle returns to its own lane with suitable clearance length between it and an 

oncoming vehicle in the opposing lane with minimum clearance of 1 second between the 

passing and opposed vehicles. 

Current design values shown in Table 2.1 (AASHTO, 2011) are based on field observations 

(Harwood et al., 2007) and on two theoretical models for the sight distance needs of passing 

drivers, which define a critical position in the passing maneuver beyond which the passing driver 

is committed to complete the maneuver. The first model (Glennon, 1970) assumes that the 

critical position occurs where the passing sight distance to complete the maneuver is equal to the 

sight distance needed to abort the maneuver. The Hassan et al. model (1996) assumes the 

location first occurring of either the Glennon Model or where the passing and passed vehicles are 

abreast and passing sight distance is the sum of the following four distances (AASHTO, 2011): 

 

PSD = d1 + d2 + d3 + d4       Equation 1 
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where: 

d1 = distance traveled during perception and reaction time and initial acceleration; 

d2 = distance traveled while the passing vehicle occupies the left lane; 

d3 = distance between passing and opposing vehicle at the end of the maneuver; and 

d4 = distance traveled by an opposing vehicle (taken as 2/3 of d2). 

 

Table 2.1 Passing sight distance for design of two-lane highways 

Design Speed 

(mph) 

Assumed Speeds (mph) 
Passing Sight 

Distance (ft) Passed 

Vehicle 

Passing 

Vehicle 

20 8 20 400 

25 13 25 450 

30 18 30 500 

35 23 35 550 

40 28 40 600 

45 33 45 700 

50 38 50 800 

55 43 55 900 

60 48 60 1000 

65 53 65 1100 

70 58 70 1200 

75 63 75 1300 

80 68 80 1400 

2.2. Passing Sight Distance Design Considerations 

Current design criteria for passing sight assume that the driver’s eye at a height of 3.5 feet can 

see an obstacle also at a height of 3.5 feet (AASHTO, 2011). This determination is based on the 

object being the height of a vehicle, where 4.35 feet represents the 15th-percentile of the current 

passenger car population from which 0.85 feet are subtracted to account for the portion of the 

vehicle that would need to be visible in order to be recognized by another driver (Harwood et al., 

1996). This determination is assumed to account for nighttime driving conditions, since 

headlights can be seen from a greater distance than the distance of vehicle recognition needs 

during the daytime. An informal study of state DOT design guidelines across the United States 

revealed that California refers to an object height of 4.5 feet and Iowa refers to an object height 

of 2.0 feet for passing sight distance, but both states publish the AASHTO and the Manual on 

Uniform Traffic Control Devices (MUTCD) guideline distances as well. 

For horizontal curves, there is need for a clear sightline on the inside of the curve. For vertical 

curves, design criteria are applicable only to crest curves, as most sag curves will not impede 

sight distance. Note that the values in Table 2.1 are assumed sufficient for a single or isolated 

pass only. Additional consideration must be given in cases where the passing vehicle, the vehicle 

being passed, or both of the vehicles are trucks, as longer sight distances may be required 

(Harwood & Glennon, 1989).  
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2.3. No-Passing zones 

Passing sight distance determines the passing zones and no-passing zones on rural two-lane 

highways. These zones are determined based on standards described in the MUTCD. Passing 

zones are established where there is sight distance greater than the prescribed limits in the 

MUTCD. For example, MUTCD guidelines for a rural two-lane highway having a posted speed 

limit of 55 mph or an 85th-percentile speed of 55 mph (whichever is greater) require a passing 

sight distance of 900 feet, meaning that if the sight distance drops below this threshold due to 

any obstruction, it marks the start of the no-passing zone. These values, shown in Table 2.2, have 

been updated from the previous edition of the AASHTO A Policy on Geometric Design (2004), 

also known as the Green Book, and are based on AASHTO’s decision regarding sight distances 

for a rural road avoidance maneuver involving speed, path, or direction change. The values 

presented in Table 2.2 are based on different operational assumptions than those presented in 

Table 2.1.  

Of concern is that Farah (2013) determined that during a passing maneuver, approximately 42% 

of the time is consumed by reaching the “point of no return.” This percentage is in contrast to the 

33% of time assumed in the AASHTO standard. Further, drivers still tend to pass other drivers 

even if the speed of the vehicle being overtaken is greater than the speed limit (Bar-Gera & 

Shinar, 2005). In addition, if warning is not provided at no-passing zone areas, there is some 

likelihood of increased crash rates (El-Zarif et al., 2002). 

 

Table 2.2. AASHTO minimum passing sight distance for no-passing zone markings  

85th-Percentile Speed or 

Posted/Statutory Speed 

Limit (mph) 

Minimum Passing Zone 

Length (ft) 

20 400 

30 550 

35 650 

40 750 

45 800 

50 800 

55 800 

60 800 

65 800 

70 800 

 

Since 1940, several models have been developed to determine minimum passing zone 

requirements. These models resulted in the development of manuals and associated criteria, but 

several types of research have been carried out regarding the comparison of the models presented 

in these manuals. In a comparison review of passing zone guidelines between the MUTCD and 

AASHTO, some studies concluded that the current passing sight distance values in the MUTCD 

and AASHTO are very low. For example, the minimum length of a passing zone at 400 feet has 

unknown origins (Staplin et al., 2001). Another study published by the Transportation Research 

Board concluded similarly, that the reason for selection of passing sight distance values in the 
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MUTCD is not known. However, AASHTO considers several assumptions with regard to 

passing maneuvers, driver safety, and measurement on sections with regular traffic flow in their 

models (Hassan et al., 1995).  

A large percentage of drivers can be represented by AASHTO’s passing sight distance model, 

and it is based on the “delayed beginning and hurried return” assumption, which means that the 

passing car accelerates into the left lane at a speed 12 mph or higher than that of the overtaken 

car. Polus et al. (2000) indicated that the AASHTO sight distance model is adequate for car-car 

passing, as the values are a little higher than required, but for a car passing a truck, the values are 

not sufficient. Recent research comparing field data and passing sight distance criteria from 

AASHTO and MUTCD found that the values mentioned in these documents are consistent with 

field data collected from the states of Missouri, Pennsylvania, and Texas, and the use of current 

standards are recommended for marking no-passing zones (Harwood et al., 2010). 

Though similar, the values presented in the most recent edition of the Green Book differ from 

those in the most recent edition of the MUTCD (FHWA, 2012), as shown in   
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Table 2.3. AASHTO recommendations (Table 2.2) do not exceed 800 feet for speeds in excess of 

45 mph, while values given in the MUTCD are closer to those assumed for deciding sight 

distance on a rural road. Harwood et al. (2007) state that the minimum sight guidelines are a 

compromise between the distance that would be required for a flying pass (i.e., where the passing 

vehicle is not required to slow down before initiating the passing maneuver) and a delayed pass 

(i.e., the passing vehicle must decelerate to the speed of the vehicle being passed and then 

accelerates once initiating the passing maneuver). Passing sections shorter than those presented 

are not presumed to make a significant contribution to the operational efficiency of a two-lane 

roadway (AASHTO, 2011).  

Locating no-passing zones in the field can be accomplished using several methods such as:  

1. the Walking Method,  

2. the Eyeball Method,  

3. the Speed and Distance Method,  

4. the Single Vehicle Method,  

5. the Multi-Vehicle Method, and  

6. the GPS Method. 

These methods are briefly outlined here and discussed in detail in the Traffic Control Devices 

Handbook (Seyfried, 2013). 

 

  



 

10 

Table 2.3 MUTCD minimum passing sight distances for no-passing markings  

85th-Percentile Speed or 

Posted or Statutory 

Speed Limit (mph) 

Minimum Passing Zone 

Length (ft) 

25 450 

30 500 

35 550 

40 600 

45 700 

50 800 

55 900 

60 100 

65 1100 

70 1200 

 

The Walking Method requires that two persons walk the centerline of a roadway with a rope or 

chain stretched between them corresponding to the appropriate no-passing length for the given 

roadway speed. A no-passing zone is located when a target situated at a height of 3.5 feet can no 

longer be seen by the rear person, and ends when the target comes back into view. 

The Eyeball Method requires that the section of road be driven in a vehicle by a person, 

presumably trained and experienced. The driver locates visually, and by judgment, where a no-

passing zone should begin and end.  

The Speed and Distance Method requires that the beginning location of a no-passing zone be 

estimated initially. The speed of a receding vehicle is then recorded along with the amount of 

time it takes for that vehicle to travel from the initial no-passing location until it disappears from 

view. This process is iterated until the point relating to the minimum passing sight distances is 

located. 

The Single Vehicle Method utilizes a vehicle outfitted with a Distance Measuring Instrument 

(DMI). A driver navigates through a curve until there is sufficient sight distance for passing, 

corresponding to the end of the no-passing zone. From this point, the DMI is used to measure a 

distance equal to the minimum passing sight distance, which marks the beginning of the no-

passing zone. 

The Multi-Vehicle Method most commonly uses two vehicles outfitted with DMI. Using two-

way radios, drivers of both vehicles traverse the roadway while maintaining the required 

minimum passing sight distance according to the DMI. The beginning and end of the no-passing 

zone are located where the lead vehicle disappears and reappears from the lagging vehicle’s 

view. Previous research has shown that the Single Vehicle Method is generally more accurate 

than the Multi-Vehicle Method (Brown & Hummer, 2000). 

The GPS Method relies on one of several techniques to obtain GPS coordinates of the road 

centerline. These coordinates are used to develop a geometric model of the road surface. Sight 

distances are then calculated using the three-dimensional model from which no-passing zones 

can be located based on minimum sight distance criteria. Though this method is more objective 

and does not rely on the experience or judgment of the evaluator as in the previously discussed 
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methods, it is heavily reliant on the accuracy of GPS. That being said, existing research shows 

that there can be large discrepancies, and thus this method has been used mostly to identify 

locations for sight deficiency consideration and not specifically for marking no-passing zones 

(Namala & Rys, 2006; Williams, 2008).  

2.4. Geometric Conditions and Alignment 

The physical characteristics of a road can play a significant role in the way in which a driver 

perceives and reacts to the surrounding environment. With reference to roadway geometry, 

horizontal and vertical curves, rather the combination of the two, can lead to erroneous 

perception of the alignment features. Smith and Lamm (1994) proposed that a combined crest 

and horizontal curve would make a driver perceive the horizontal curve to be sharper than it 

actually is, while a combined sag and horizontal curve would cause the driver to perceive the 

horizontal curve to be flatter than it actually is. This theory is known as the driver perception 

hypothesis, the supposition being that a driver would be inclined to adopt a lower or higher speed 

than if the horizontal radius were on a flat grade, which is of particular concern on a sag 

combination where the driver would perceive the curve to be flatter and adopt a higher, 

potentially unsafe, operating speed. The driver perception hypothesis has been validated by later 

studies using computer visualization techniques and qualitative evaluations of subjects on the 

visual representation of a road scenario (Bidulka et al., 2002; Hassan & Sayed, 2002). In general, 

speed reductions tend to be greatest for crest combinations and in the presence of horizontal 

curves with smaller radii (Hassan & Sarhan, 2012). Other studies, such as those conducted by 

Perco (2008) and Cardoso et al. (1998) suggest that the alignment does not necessarily influence 

the maximum operating speed, but rather the curvature change rate, representing the character of 

the road alignment. Studies have addressed where drivers tend to focus their attention while 

navigating curves (Zhao et al., 2011), indicating that the central part of the curve is a critical 

location when trying to maintain lane position and that drivers’ attention to the roadway 

increases as they approach the apex of the curve. Advance curve warning signs have proven an 

effective tool at informing drivers of problematic curves and improving safety at those locations 

(Shinar et al., 1980). In addition, the natural reduction in speed on horizontal curves has shown 

to be beneficial in terms of collision risk (Bella & D’Agostini, 2010).  

Though these previous studies provide insight into the way that drivers behave while negotiating 

curvilinear roadway alignments, they do not specifically address the nature of passing behavior 

under these conditions. It appears that there are certain combinations of curve radius, length of 

curve, differences in grade, and type of transition design that make it more difficult to judge the 

opportunities for a safe passing maneuver. It has generally been assumed that there are 

interactions between the safety effects of horizontal and vertical alignment combinations, but 

limited research exists to document these effects or demonstrate them in a form that can be used 

for safety prediction (FHWA, 2014). Further, the influence of curve orientation on a driver’s 

ability to recognize suitable gaps in traffic to execute a passing maneuver has not been 

adequately addressed. This is to say that if the lane of travel is located on the inside of the curve 

versus the outside of the curve, the driver might have more or less difficulty seeing and judging 

potential gaps in the opposing stream of traffic.  
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2.5. Driving Environment and Human Factors 

Human behavior dictates the type of driver interactions, inherently affects driving task and load, 

and is an important consideration in traffic operations and road safety. Passing sight distance 

criteria for vertical or horizontal curves have not historically included factors that relate to 

variations in driver performance and capabilities (Neuman, 1989; Fambro et al., 1997), 

particularly those in an aging driver population. Other issues with the current criteria include (1) 

the fact that passing sight distance is based largely on old, perhaps outdated, field data of only 

passenger cars; (2) questionable speeds and maneuver types involved while passing; (3) no 

consideration of drivers who are not “committed to pass” and will abort a passing maneuver; and 

(4) the incorporation of a compromise between “flying” and “delayed” passing maneuvers 

(Transportation Research Board, 2008). Though some simulator studies have found that road 

curvature does not significantly impact variables such as passing duration and distance, findings 

do not consider the likelihood of initiating a maneuver or the safety of doing so (Farah, 2013). 

Traffic conditions, such as the formation of platoons and the availability of gaps, have been 

shown to influence a driver’s passing behavior. Traffic platoons can be impacted and formed by 

certain geometric configurations (Farah et al., 2009). The coinciding traffic volumes then change 

the nature of following gaps and can influence the way in which people look for passing 

opportunities and execute passing maneuvers (Bella, 2013) and potentially increase the risk of 

rear-end collisions. From an operational standpoint, it is important to provide enough 

opportunities for drivers to pass slower-moving vehicles in order to maintain an adequate level of 

service. The length of a passing zone can increase the likelihood of passing, but only up to a 

length of about 3500 feet (Moreno et al., 2013). Driver characteristics are an important 

consideration in the nature of passing behavior. Some studies, such as that by Bekhor and Toledo 

(2007), show that some drivers, particularly those that are considered “patient and careful,” 

require significantly longer gaps to attempt a passing maneuver.  

Limited visibility conditions, such as those caused by inclement weather or during nighttime 

driving, might also be of concern. Though some studies suggest that driver behavior is 

significantly affected when driving at night versus day (Calvi & Bella, 2014), speeds during 

nighttime negotiation of curves are not significantly different from those during daylight (Bella 

et al., 2014), though the authors note that the horizontal curves simulated in the study were of 

“sharp radii.” The lack of visibility in certain environmental conditions (e.g., fog) causes some 

drivers to follow too closely, while other drivers increase their following gap distance compared 

with their distance in normal visibility conditions (Broughton et al., 2007). These behaviors have 

direct implications for the availability of gaps in which a driver can perform a passing maneuver, 

and influence the way in which a passing maneuver is performed. 

2.6. Roadside Characteristics and Configurations 

Anecdotally, factors that seem to affect available sight during a passing maneuver include the 

presence of guardrail and the surrounding vegetation and landscape. Speed and lateral placement 

of drivers were not affected by roadside configurations (i.e., presence of trees and/or barriers 

such as a guardrail), rather only the alignment and profile of the road (Bella, 2013). Delineation 

on and advance warning before curves are effective ways of keeping vehicles at an appropriate 

speed through curve negotiation (Charlton, 2007). Again, though studies have addressed the way 
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in which roadside features affect driver behavior, there is little evidence to suggest how these 

features influence a driver during a passing maneuver. 

2.7. Driving Simulator Applications 

In the real world, changing a driver’s ability to pass by re-marking passing zones based on 

engineering judgment, time of day, or season is not realistic. Driving simulators are a very useful 

way of studying driver perception of roadway features and environments in a controlled 

environment. The virtual environment can be created to replicate an original highway and test a 

driver under various conditions. Primary advantages include low cost, ease of data collection, 

safety for test drivers, and being able to interact easily with the participants after the experiment 

has concluded to ascertain their perspectives and qualitative evaluations of the experience (Bella, 

2009; Lamm et al., 1999; Zakowska, 1999). The driving simulator can generate data about many 

driving parameters such as lane position and acceleration-deceleration, and this data can be 

analyzed for research. Several studies have shown that data obtained from a driving simulator are 

a reliable source of information and similar to data that could be collected from the field. 

Moreover, these data can be used to assess a driver’s behavior and passing maneuvers (Farah, 

2013; Hillel & Shinar, 205; Francesco, 2014; Bella & D’Agostini, 2010). 

A study on deriving the tendency of a driver to pass another vehicle revealed that mental load is 

the prime contributor for passing maneuvers (Bar-Gera & Shinar, 2005). This conclusion can be 

supported by the explanation in AASHTO that drivers need to process visual information such as 

geometric information, car speed, weather, and visibility. Increased amounts of information 

processed by a driver require more time in making a decision, and if there is an error in one or 

more details processed by the driver, the driver must terminate the passing movement, if 

possible, or the likelihood of a vehicle crash will increase.  

A study of the driver perception hypothesis, where the perception of three different types of 

curves—namely flat horizontal curves, horizontal curves with vertical sag, and horizontal curve 

with vertical crest—by the driver was studied by measuring the change in speed and lateral 

position. The results indicated that there is no significant reduction in speed and no major change 

in lateral position for flat horizontal curves and horizontal curves with vertical sag, while the 

horizontal curve with vertical crest produces speed reduction and change in lateral position. 

From the results, it was concluded that horizontal sag curves are safer than horizontal crest 

curves, as driver perception on sag horizontal curves exhibits similar results with flat horizontal 

curves, whereas crest horizontal curves resemble sharper curves (Francesco, 2014).  

A safety evaluation study was carried out by Bella to assess the risk of collision with respect to 

traffic volumes. The time to collision, which was analyzed for rear-end collisions, implied that as 

the traffic volume increased, the risk of rear-end collisions increased. The detailed analysis 

concluded that geometry has no effect on the risk of rear-end collisions; hence, whether it is a 

straight section or a curvilinear road, the amount of traffic is the key factor influencing time to 

collision on two-lane highways (Bella & D’Agostini, 2010). In an effort to evaluate the effects of 

the presence of a shoulder and guardrail on vehicle speed and position on horizontal curves, a 

study by Francesco (2013) revealed that vehicle speed is greatly influenced by horizontal curves, 

while lateral position is affected by the presence of shoulder and guardrail. 

A number of studies have validated driver behavior in rural environments in driving simulators 

with real-world field data (Bella, 2008); that is, average speeds at point locations along a test 
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section in the simulator have been compared with corresponding points on the actual road 

segment. Though speed comparisons show that a driver’s behavior in the simulator is generally 

representative of behavior in a real driving environment (Meuleners & Fraser, 2015), speeds on 

long unconstrained sections of roadway, such as long tangents, tend to be significantly higher in 

the simulator (Boer et al., 2000; Simsek et al., 2000). However, this finding is countered by other 

research which suggests that speeds are faster in an instrumented car in a real-world environment 

than in the simulator when a driver is exposed to complex situations such as dynamic curves and 

intersections where deceleration and acceleration are necessary (Godley et al., 2002). In addition, 

simulator driving speeds more closely matched real-world speeds under high-resolution, narrow-

field-of-view simulated conditions, while lane position of the simulator drivers was closer to that 

of real-world drivers under low-resolution, wide-field-of-view simulated conditions (Jamson, 

2000). 

This literature review did not find any previous research related to either passing maneuvers on 

horizontal curvature or the assessment of passing maneuvers along a real-world alignment in a 

virtual environment. Filling this knowledge gap is a keen point of interest for this research. 

2.8. Research Needs 

Based on the literature discussed in the previous sections, five primary topics for research still 

exist and warrant further study: 

1. The presumption that distance at which headlights can be seen negates the need for 

consideration in passing sight distance, as it is larger than the distance to recognize a 

vehicle as such. The difference between the height of headlights (2.0 feet) and the 

assumed vehicle height for passing sight distance (3.5 feet) is considerable, and the 

recognition of headlights is contingent upon roadway configuration and the roadside 

environment.  

2. The assumed speed and acceleration values in the AASHTO guidelines are known to be 

invalid and out of date.  

3. The characteristics of passing behavior on horizontal curves, vertical curves, and curve 

combinations are likely different from those on flat tangents. Though much research 

points to the way in which drivers behave on curvilinear alignments, there is little or no 

research to support how passing maneuvers vary on these types of segments.  

4. The influence of roadside elements and environmental conditions on driver behavior in 

general has been studied, but not explicitly how these elements affect passing sight and 

passing behavior.  

5. Passing behaviors in a simulated environment have not been validated with passing 

behaviors in a real-world environment. 
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CHAPTER 3.0 METHODOLOGY 

This chapter describes the methodology used to test and measure driver passing behavior. The 

background section describes the general concept of the methods used and is followed by a 

discussion of the procedures used for field data collection. Then a section on the functions and 

operations of the driving simulator is provided. Finally, the development of the different 

scenarios is explained, and the experimental design parameters of the simulated traffic and 

procedures for laboratory data collection are discussed. 

3.1   Background 

To determine the effect of horizontal curvature, vertical curvature, and guardrails on driver 

passing behavior, a combination of field data collection and a driving simulator in a controlled 

environment were used. Field sites were identified along areas of concern to the Alaska 

Department of Transportation and Public Facilities (AKDOT&PF). Data were collected at these 

sites and used to inform the development of the driving simulator. Driving participant testing 

was conducted in a simulation environment that replicated the identified sections of two-lane 

rural highway in the state of Alaska. Each participant conducted, at most, one session, driving for 

no more than 50 minutes. After each participant concluded the session, the person responded to 

questions from the debriefing form related to the study. 

3.2 Field Data  

Three segments of highway were identified as locations of interest based on historic crash 

records and input from AKDOT&PF: (1) Parks Highway (Milepost 155–160), Seward Highway 

(Milepost 104–113), and Sterling Highway (Milepost 145.5–150.5). A summary of fatal and 

major injury crashes for the period 2001 through 2008 for these locations can be found in 

Appendix A.  

Several field visits were made to each site to identify potential segments for field data collection. 

This decision was aided by video that was obtained by mounting a camera to the inside of a 

windshield while driving the segments to obtain driver point of view. These videos were also 

used for reference in the development of the driving simulator tiles, as discussed in Section 3.3 

of this report. 

3.1.1. Data Collection 

One passing zone section was selected from each of the identified segments of highway for field 

observation (see Street View Imagery obtained from Google Maps in Figure 3.1 through Figure 

3.3). The passing sections were selected based on ease of access and availability of vantage 

points for video cameras to capture real-world passing behaviors. For in-field collection of these 

passing maneuvers, three video cameras (see Figure 3.4 for typical camera setup) were used to 

capture vehicle position and time throughout each of the selected passing zones. The cameras 

used were Ten and Two Travel Time Monitors purchased from L2 Data Collection Solutions. 

These particular cameras were selected for four reasons: 
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1. relatively low cost compared with other proprietary and specialty camera systems; 

2. ability to run on a rechargeable 18Ah battery with multi-day capacity for uninterrupted 

footage in locations where a permanent power source is not available;  

3. adjustable field of view to account for setup at varied distances from edge of roadway 

depending on roadside topography and vegetation; and  

4. a digital video recorder (DVR) is used with up to 48 hours of video storage capacity. 

The field of view of each camera was overlapped so that vehicles could be tracked continuously 

through the entire passing zone (see Figure 3.5). When available, cameras were mounted directly 

to trees of adequate size or telephone poles using buckle straps. At field segments or locations 

where this option was not available, a 3-inch PVC conduit with mounting brackets and guy-wires 

was affixed to the ground using a standard tent peg or tethered to a nearby object using straps. 

Each camera was located such that it would not be visible to the common passerby or untrained 

eye. Video was only collected on fair-weather days when no environmental or weather 

conditions would affect visibility or the condition of the pavement.  

Reference points to be used for trajectory extraction were physically placed on the side of the 

roadway at 100-foot spacing using temporary marking paint. A series of preliminary field studies 

indicated that reference points at a spacing of less than 100 feet were too small for accurate 

vehicle trajectory digitization and data extraction. The reference points were also enhanced 

digitally during post-processing for better visibility.  

 

  

(a) (b) 

Figure 3.1. Parks Highway northbound at (a) beginning of passing zone and (b) end of passing 

zone at Milepost 159 on a right-oriented curve near Trapper Creek, Alaska 
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(a) (b) 

Figure 3.2. Seward Highway northbound at (a) beginning of passing zone and (b) end of passing 

zone at Milepost 105 on a left-oriented curve near Indian Valley, Alaska 

 

  
(a) (b) 

Figure 3.3. Sterling Highway southbound at (a) beginning of passing zone and (b) end of 

passing zone at Milepost 148 on a relatively straight section near Anchor Point, Alaska 

 

   
(a) (b) 

Figure 3.4. Camera setup showing (a) external view with LCD monitor and (b) internal view 

with DVR control and installed battery 
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Figure 3.5. Schematic of typical field data collection setup 

 

3.1.2. Data Processing 

Video files were collected at 30 frames per second and segmented into 1-hour periods for ease of 

processing and transferring later. These raw video files were first processed to eliminate files 

where very few or no cars were present in the frames. Once a final set of video was isolated, 

each 1-hour period was watched at 90 frames per second (three times the normal speed) to 

identify when passing maneuvers were executed. The timestamps corresponding to the initiation 

of a passing maneuver (Camera 1) were recorded and saved for processing later. A summary of 

the total processed video time and the number of passing maneuver observations can be seen in 

Table 3.1.  

Table 3.1 Field site summary statistics 

 
Parks 

Highway (1) 

Parks 

Highway (2) 

Seward 

Highway 

Sterling 

Highway 

Site Characteristics     

 Beginning Milepost 159 NB 105 NB 148 NB 

 Observed Segment Length (ft) 3600 4000 2750 

 Passing Zone Length (ft) 2630 3100 1665 

 Horizontal Curve Orientation  Right Left n/a 

 Vertical Curve Orientation Crest n/a n/a 

 Posted Speed Limit (mph) 65 55 55 

Field Data Characteristics     

 Total Video Collected (hh:mm) 42:35 36:45 44:29 40:22 

 Start Date of Collection (yyyy-mm-dd) 2015-06-26 2016-06-10 2016-07-22 2017-08-19 

 Total Video Processed (hh:mm) 20:00 18:00 25:00 14:00 

 Passing Maneuvers Observed 23 11 18 7 

 

The previously recorded timestamps were then used to identify the series of frames from each 

video that coincided with a passing maneuver. Timestamp and position of vehicles were coded 

with a computer-aided script that uses a keystroke command to record time points at a resolution 
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of 0.01 seconds. Considering frame rate and timestamp accuracy, the temporal error is limited 

only to that of coding by the analyzer. To minimize temporal coding error, two individuals 

extracted position and time from the data. Passing maneuvers of two vehicles were extracted by 

two individuals for each field site and compared to ensure that at least 95% match was achieved 

in the positional markings. If this match was not achieved, the trajectories were extracted again 

and then compared. This process was repeated until the match criteria were achieved. Once 

match was achieved for the initial six trajectories, the remaining passing maneuvers were 

extracted by a single individual. Having timestamps associated with the reduced data also 

allowed for discrepancies and isolated issues to be reexamined and rectified as needed. 

Lateral vehicle position was recorded to the nearest quarter-point on the roadway at each 100-

foot marker throughout the passing zone. A passing maneuver was considered initiated when the 

center of the passing vehicle crossed over the centerline of the roadway. In general, the initiation 

and execution of a passing maneuver were observed in Camera 1 and Camera 2, while the 

termination of the passing maneuver was observed in Camera 3 (Figure 3.1).  

One significant limitation is that the distance traveled by the opposing vehicle and the distance 

between the passing vehicle and the opposing vehicle at the end of the maneuver were not 

always observable due to the camera position, particularly for late-finish passes. Additionally, 

because of the camera orientation, we were unable to see the initial gap size between the passing 

vehicle and the vehicle in the opposing stream at the initiation of the pass.  

3.3 Driving Simulator 

The driving simulator at the Idaho Visual Performance Laboratory (IVPL), shown in Figure 3.6, 

is a medium fidelity fixed-base driving simulator. The simulation software is National Advanced 

Driving Simulator (NADS) MiniSim version 2.0 installed on a Windows 7 workstation. The 

hardware is composed of cab-mounted controls for realistic user interaction; a single workstation 

for all simulation processing, data collection, and graphics rendering; and additional components 

for audiovisual output and to facilitate transmission of information between the primary 

hardware components. 

  

(a) (b) 

Figure 3.6. Driving simulator (a) overall layout and (b) control panel 

The cab for user interaction is from a 2001 Chevrolet S10 pickup truck. The vehicle controls are 

connected to the MiniSim via a Suzo-Happ model 95-0800-10k USB Game Controller Interface 

(UGCI). The steering wheel is the original steering wheel from the S10 pickup; it is self-
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centering and has a 540-degree steering range. The brake and accelerator pedals are also original 

equipment from the S10 pickup and provide haptic feedback similar to the feedback of a normal 

automobile. An automatic gear selector from a 2001 Honda Civic was installed in the center 

console to give users a standard interface for gear selection. 

The simulation visuals are displayed via a 7-channel display configuration. The first three 

channels are displayed by three Canon REALiS SX800 projectors, which project the front view 

of the simulation environment onto three 90-inch screens at a combined resolution of 4200  

1050 pixels. The three screens form three sides of an octagon centered at the projected eye-point 

of the simulation for a field of view of 135 degrees horizontally and 34 degrees vertically. The 

cab is positioned so the driver’s eyes are at the projected eye-point of the simulation. The fourth 

video channel displays the dashboard instrument cluster, including a speedometer, tachometer, 

engine temperature, gear selection, and fuel gauge. This channel is displayed by a 10-inch liquid 

crystal display (LCD) screen with a resolution of 1280  800 pixels that is mounted in place of 

the original instrument cluster. The final three channels display the rear view of the simulation. 

Eight-inch LCD screens with a resolution of 800  600 pixels are mounted on the driver side and 

passenger side mirror housings of the cab. A 65-inch plasma screen with a display resolution of 

1280  720 pixels is mounted on the rear of the cab and is visible through the original center 

rear-view mirror. 

The workstation contains a six-core Intel Core I7 processor running at 3.9 GHz, 32 GB of RAM, 

and two NVidia video display adapters. A GeForce GTX680 GPU processes the three main 

screens, which are routed through a Matrox T2G-D3D-IF multi-display adapter, as well as the 

instrument cluster and the passenger side mirror. A GeForce GTX660TI GPU processes the 

driver side mirror and rear screen. Finally, a 4.1-channel audio system uses four speakers 

mounted in the cab doors and a subwoofer mounted behind the driver’s seat to produce engine, 

environmental, and road noise. 

The MiniSim simulation software is a part of the driving simulation suite developed at the 

National Advanced Driving Simulator (NADS) and The University of Iowa, which also includes 

the Tile Management Tool (TMT) and Interactive Scenario Authoring Tool (ISAT) for 

simulation development. The MiniSim utilizes NADSDyna high-fidelity vehicle dynamics 

software to model vehicle dynamics in the simulation. During the simulation, MiniSim uses 

information from the terrain visual database, terrain logical database, and scenario to render the 

simulation. Additionally, the software records vehicle input, vehicle dynamics, and scenario-

related variables at a collection frequency of 60 hertz. 

3.3.1. Scenario Development – First Stage 

To develop the required scenarios for each participant, multiple software applications were used 

along with the MiniSim simulation program to test these scenarios. Every scenario was 

composed of multiple tiles that displayed the appropriate roadway geometries and the 

surrounding environment. These roadway geometries were based on the three real-world 

alignments of the Alaska Highway system. 

Autodesk AutoCAD Civil 3D software was used to create the alignment, profile, and corridor for 

each test section based on as-built plans from the AKDOT&PF. The corridors consisted of a 51-

foot-wide planar cross section projected along the alignment and profile. The corridors were 

exported from Civil 3D and imported into Autodesk 3ds Max. 
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In 3ds Max, an image texture was applied to the roadway, resulting in a 24-foot-wide paved 

roadway with a centerline and fog lines as well as six-foot paved shoulders with gravel and grass 

edges. For the first stage of the study, a dashed centerline (i.e., permitted passing) was provided 

for the entire roadway regardless of sight distance. The surrounding environment was then 

created in consultation with staff from the AKDOT&PF. The environment included a cliff and 

water body for Seward Highway, and forest, rolling highway, and mountains for the Parks and 

Sterling highways. Example comparisons between each simulated environment and Google 

Street View screenshots are shown in Figure 3.7 through Figure 3.9. Each road section with the 

surrounding environment was exported as a tile to be combined into a visual database by NADS 

Tile Management Tool (TMT) software. The surrounding environment was exported to Civil 3D 

as well for sight distance analysis. Finally, a 3ds Max script was used to extract the coordinates 

of the centerline of each section to be used for roadway logic and to calculate geometric 

variables for each track. 

 

   

(a) (b) 

Figure 3.7. Seward Highway comparison of (a) actual highway and (b) simulated highway 

 

   

(a) (b) 

Figure 3.8. Parks Highway comparison of (a) actual highway and (b) simulated highway 
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(a) (b) 

Figure 3.9. Sterling Highway comparison of (a) actual highway and (b) simulated highway 

The tiles for each section were combined with each other and with background filler tiles in 

TMT. The exported visual databases were then installed into the MiniSim visual directory to be 

rendered during the simulation. Text files containing the centerline coordinates for each tile were 

combined and exported by TMT. The resulting logical databases were installed into the MiniSim 

directory to be used for roadway logic during the simulation.  

Python scripts were developed to write the scenario files, which consist of information regarding 

the locations and characteristics of the vehicles, speed limit signs, and data collection triggers in 

the simulation. The scenario files were then opened in ISAT to visually inspect the object 

locations and verify that the Python scripts worked correctly. Finally, the scenario files were 

imported into the MiniSim directory. Each scenario was tested multiple times to verify the 

correct placement and behavior of scenario and environmental objects. The output data from the 

trial runs were also analyzed and validated before any data were collected. 

Simulated Traffic 

The simulated traffic needed to be condition-specific to encourage passing by each participant 

along the selected roadway sections. Traffic was initially simulated in the travel lane at 43 mph 

(per AASHTO guidelines) as well as in the opposing lane at 55 mph. The posted speed limit for 

all roadway segments was 55 mph. The same-lane traffic had a gap of one-quarter mile, which 

provided sufficient time and distance for a driver to initiate and complete a passing maneuver. 

The opposing vehicles were created at one-half mile distances along each track; a one-half mile 

gap has been shown to encourage passing on two-lane rural highways (Dixon, 2015). 

Experimental Design 

To evaluate the passing decision-making of drivers with varying geometric conditions, hired 

participants drove for about an hour in the simulator. Participants drove through different track 

combinations, once driving northbound or southbound, taking a break of 5 to 10 minutes, and 

then driving the opposite direction. Each drive was followed by a participant questionnaire that 

collected personal perspectives about type of driving (aggressive or passive) and socioeconomic 

information (age, sex, and years of driving experience). 

The statistical experimental design of a Latin square was carried out to control for order effects 

in the experiment. In a Latin square design treatment, sections were assigned to rows and 

columns in such a way that each treatment occurred once. Table 3.2 shows an example of the 

experimental design used for this study. Each track was driven by eight participants. 
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Table 3.2 Latin square experimental design (Stage 1) 

Track Order       Tile Order     

Track 1 
Seward 

(NB) 

Parks 

(NB) 

Sterling 

(NB) 

Break 

Sterling 

(SB) 

Parks 

(SB) 

Seward 

(SB) 

Track 2 
Parks 

(NB) 

Sterling 

(NB) 

Seward 

(NB) 

Seward 

(SB) 

Sterling 

(SB) 

Parks 

(SB) 

Track 3 
Sterling 

(NB) 

Seward 

(NB) 

Parks 

(NB) 

Parks 

(SB) 

Seward 

(SB) 

Sterling 

(SB) 

 

Data Reduction 

Each session recorded about 1 gigabyte (1 GB) of data, which was stored in a data acquisition 

format. These data contained microscopic information related to vehicle dynamics, user input, 

and position, and were defined in accordance with SAE International recommended practices 

(SAE, 2015). Data related to vehicle dynamics included speed and acceleration. User input data 

included steering wheel angle, accelerator position, brake pedal position, turn signal position, 

and gear selector position. Position data included the vehicle’s coordinates, lane position, and 

following distance, as well as the coordinates of every vehicle in the scenario. All data 

acquisition files were converted into a hierarchical data format for data reduction.  

A script was written using an IPython interface to extract data about attempted passes. Whenever 

the participant’s vehicle entered the oncoming lane, the identification of the vehicle being 

followed was recorded. When the participant’s vehicle returned to its own lane, the identification 

of the vehicle being followed was compared with the previous vehicle; if the vehicles were 

different, then the event was recorded as a pass. If the vehicles were the same, then the status of 

the turn signal at the initiation of the movement was checked. The event was recorded as an 

aborted pass if the signal indicated that the driver intended to move to the left lane, and the event 

was not recorded if the driver did not indicate that the lane breach was intended. 

Several additional variables related to each pass attempt were either recorded directly from the 

raw data or calculated. These variables include the location of the participant’s vehicle at 

initiation and conclusion of the maneuver; distance to the impeding vehicle and oncoming 

vehicle at initiation and conclusion of the maneuver; total time and distance spent in the 

opposing lane; vehicle speed when abreast of the impeding vehicle; and time to contact with the 

oncoming vehicle at initiation and conclusion of the maneuver. The location of the vehicle at the 

time of initiation was then used to extract geometric data such as sight distance, slope, and 

horizontal and vertical curvature. 

3.3.2. Scenario Development – Second Stage 

The second stage of the driving simulation experiment focused on the effects of guardrail and 

centerline striping on driver passing behavior. Results from the first stage were used to prioritize 

shorter sections of highway so more repetitions could be completed. The targeted sections were 

the Seward Highway (Milepost 109 to Milepost 112), Parks Highway (Milepost 158 to Milepost 

160), and Sterling Highway (Milepost 149.5 to Milepost 150.5). 

This stage also included a short experiment to test the effects of a guardrail on collision 

avoidance. Each participant encountered an opposing vehicle that was executing a passing 

maneuver and was in the participant’s travel lane. To avoid a head-on collision, the participant 
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needed to move out of the oncoming vehicle’s trajectory by moving toward the edge of the road. 

For half of the participants, the shoulder was clear (i.e., no guardrail was present); for the other 

half of the participants, the shoulder was not clear (i.e., guardrail on the shoulder).  

The procedure for developing the simulation scenarios for the second stage was the same as for 

the first stage, with the additions of changing the centerline striping and adding a guardrail. 

Google Street View was used to identify the locations of the passing zones and guardrail 

sections. The appropriate image texture (striped for no passing, two-way passing, or one-way 

passing) was then applied to the roadway in 3ds Max to match the observed striping. Guardrail 

sections were inserted with the 3ds Max Civil View extension with dimensions taken from the 

Alaska Department of Transportation Standard Drawings Manual (AKDOT&PF, 2017). An 

example screenshot with centerline striping and guardrail is shown in Figure 3.10. 

 

Figure 3.10 Seward Highway with guardrail and field-matched striping 

In addition to the three sections of highway, a short roadway section was designed to test the 

effects of guardrails on collision avoidance. The section consisted of a straight and level section 

of road for 2000 feet, followed by a 600-foot crest vertical curve (K = 205). The section was 

marked with a double yellow centerline for its entirety. The tile was created with and without a 

guardrail at the curve. Screenshots of the collision avoidance portion of the experiment are 

shown in Figure 3.11. 

  

(a) (b) 

Figure 3.11 Screenshots of collision avoidance experiment (a) with guardrail and (b) without 

guardrail 
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Simulated Traffic 

Adjustments to the traffic were made based on preliminary results from the field data collection 

and results from the first stage. The speed of the same-lane traffic was increased to 57 mph based 

on field data. The posted speed limit was increased to 60 mph to encourage participants to pass 

and as a compromise between the actual posted speed limits of 55 mph for the Seward Highway 

and Sterling Highway and 65 mph for the Parks Highway. The speed of the oncoming vehicles 

was set at the posted speed limit. Since there were few unsafe pass attempts in the first stage, the 

density of the oncoming traffic was increased so that drivers had to accept shorter gaps. Vehicles 

were created at an average distance of one-quarter mile along each track; these distances were 

drawn from a normal distribution with a standard deviation of 300 feet. This variation was added 

to prevent participants from realizing that the traffic was regularly spaced and making passing 

decisions accordingly. The spacing between the same-lane vehicles was kept at one-quarter mile. 

To test the effect of a guardrail on collision avoidance, an oncoming vehicle was programmed to 

be in the participant’s travel lane overtaking another vehicle when the participant traveled over a 

crest vertical curve. The overtaking vehicle was programmed to travel at 65 mph and the 

overtaken vehicle was programmed to travel at 60 mph. 

Experimental Design 

A standard Latin-square design for three track sections would have resulted in the Seward 

Highway section with no guardrail (section 1) preceding the Seward Highway section with 

guardrail (section 2) in 2 out of 3 conditions (see tracks 1–3 in Table 3.3). A counterbalancing 

Latin-square design in which the Seward Highway section with guardrail (section 2) preceded 

the Seward Highway section with no guardrail (section 1) in 2 out of 3 conditions (see tracks 4–6 

in Table 3.3) was added to eliminate order effects. 

At the end of the second drive (after all of the passing data were recorded), each participant 

encountered the collision avoidance portion of the experiment. A guardrail was present for half 

of the participants, and not present for the other half of the participants. 
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Table 3.3 Latin square experimental design (Stage 2) 

Track 
      Tile Order     

Northbound  Southbound 

Track 1 
Seward 

(no GR) 

Seward 

(GR) 

Parks and 

Sterling 

Break 

Parks and 

Sterling 
Seward 

(GR) 
Seward 

(no GR) 

Track 2 
Seward 

(GR) 

Parks and 

Sterling 

Seward 

(no GR) 

Seward 

(no GR) 
Parks and 

Sterling 
Seward 

(GR) 

Track 3 
Parks and 

Sterling 

Seward 

(no GR) 

Seward 

(GR) 

Seward 

(GR) 
Seward 

(no GR) 
Parks and 

Sterling 

Track 4 
Seward 

(GR) 

Seward 

(no GR) 

Parks and 

Sterling 

Parks and 

Sterling 
Seward 

(no GR) 
Seward 

(GR) 

Track 5 
Seward 

(no GR) 

Parks and 

Sterling 

Seward 

(GR) 

Seward 

(GR) 
Parks and 

Sterling 
Seward 

(no GR) 

Track 6 
Parks and 

Sterling 

Seward 

(GR) 

Seward 

(no GR) 

Seward 

(no GR) 
Seward 

(GR) 
Parks and 

Sterling 

 

3.3.3. Participant Recruitment 

For each stage, participants with unrestricted valid driver licenses were tested. All of the 

participants were recruited from the community through advertising flyers posted in public 

places such as grocery shops, shopping centers, and on craigslist. Participants were required to 

be 18 years of age or older, and were paid $20 per hour.  

Participants recruited for the study were treated in accordance with the University of Idaho’s 

Institutional Review Board (IRB) protocol governing the use of human subjects in research. 

Before starting, participants were given a consent form to read, agree to, and sign. The consent 

form explained that a simulated virtual environment was going to be presented, and there was 

risk of simulator sickness associated with the study. The consent form stated that the 

participant’s task was to control the vehicle’s movement in the virtual world using input devices 

like a steering wheel, brake, and gas pedals. The form also stated that participation was going to 

require one session of approximately 60 minutes, that a participant could withdraw from the 

study at any time without penalty, and that the data collected would be kept anonymous.  

A general description of the study was read to all drivers prior to participation. The description 

pointed out that the participants’ goal was to keep the vehicle centered in the lane and to travel at 

an appropriate speed, just as would occur in everyday driving. In the description, it was 

emphasized that participants would drive the vehicle as if they were in a hurry to get home from 

a long weekend trip. To avoid compromising the objective of the study, the instructions did not 

indicate that the participant had to pass other vehicles. 

To ensure a firm understanding of the study procedures and familiarity with the control of the 

driving simulator, participants were given a 5- to 10-minute simulator test drive on a rural two-

lane highway composed of straight and curved horizontal segments prior to actual testing. 

Participants were asked to enter the vehicle and adjust the rear-view mirror and driver’s seat to 

their preference. After completion of the test drive, participants were asked to remain seated 

while the experiment simulation was uploaded. The participants were again reminded that the 

steering wheel needed to be centered. 
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At the end of the experiment, a “Please pull over to the shoulder and stop” message was given to 

each participant, indicating that the experiment had ended. After making certain that the 

participant had pulled over and parked the vehicle, the researcher proceeded to stop the 

simulation. The researcher then stored and saved the experiment data in the appropriate folder 

for future analysis. Participants were asked to respond to a debriefing form provided by the 

researcher. Participants answered questions about their age, sex, and years of driving experience, 

whether they noticed anything unusual about the simulation, and what affected their driving 

behavior. Afterwards, the participants were informed of the study’s purpose, and the researcher 

answered any questions that the participants had about the study. The participant was 

subsequently compensated for his or her time. 

3.3.4. Experimental Procedure 

Basic instructions were read to all drivers prior to participation. The instructions stated that the 

driver’s goal was to keep the vehicle centered in the lane and to travel at an appropriate speed, 

just as in everyday driving. To induce a sense of urgency and increase the number of passing 

maneuvers, the participants were instructed to drive as if in a hurry. In the first stage, the 

instructions state that the participant is in a hurry “to get home from a weekend long trip.” In the 

second stage, the instructions state that the participant is in a hurry “for a family emergency.” 

This heightened urgency was deemed necessary to encourage participants to pass vehicles at 

higher speeds than in the previous stage. 

The participants then completed a short test drive in the simulator to become familiar with the 

controls of the vehicle. Each participant drove the sequence of tracks indicated in the experiment 

design, with a short break between the two scenarios. After the completion of both test scenarios, 

the participants completed a brief questionnaire regarding the simulation, their driving history, 

and selected personal demographics. 

3.3.5. Data Reduction 

Each session recorded about 1 gigabyte of data that was stored in a data acquisition (.daq) 

format. These data contained microscopic information related to vehicle dynamics, user input, 

and position. Data related to vehicle dynamics included speed and acceleration. User input data 

included steering wheel angle, accelerator position, brake pedal position, turn signal position, 

and gear selector position. Position data included the vehicle’s coordinates, lane position, and 

following distance, as well as the coordinates of every vehicle in the scenario. All .daq files were 

converted into a hierarchical data format (hdf5) for data reduction.  

A script was written using an IPython interface to identify when passes were attempted. Several 

variables related to each pass attempt were either recorded directly from the raw data or 

calculated, including the location of the participant’s vehicle at initiation and conclusion of the 

maneuver; distance to the impeding vehicle and oncoming vehicle at initiation and conclusion of 

the maneuver; the total time and distance spent in the opposing lane; the vehicle’s speed when 

abreast of the impeding vehicle; and the time to contact to the oncoming vehicle at initiation and 

conclusion of the maneuver. The location of the vehicle at the time of initiation was then used to 

extract data such as sight distance, slope, and horizontal and vertical curvature. 

A script was also written to extract frames from each drive to build a dataset that included the 

pass attempts from the pass counting script as well as frames at which the drivers chose not to 
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pass. The script looped through each drive and sampled frames from a uniform distribution of 

10–30 seconds. If a pass attempt occurred within the next 20 seconds, the script would record 

geometric and situational variables for the frame at which the pass attempt was initiated and 

record “attempt” for the outcome variable. If no attempt occurred, the variables were recorded 

for the frame that was sampled, and “none” was recorded for the outcome variable. The frames 

were only sampled if the driver was within 250 feet of an impeding vehicle so that a pass attempt 

was possible; of the observed pass attempts, this distance represented the 98th percentile of the 

following-distance distribution. 

Finally, a script was written to extract information regarding how participants in the second stage 

reacted to the vehicle in their lane. Specifically, the script recorded whether the driver collided 

with the oncoming vehicle and how far the driver moved toward the edge of the road (lane 

deviation). 
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CHAPTER 4.  RESULTS AND ANALYSIS 

4.1. Field Data 

The extracted rates of observed passing maneuvers from the video observations are shown in 

Figure 4.1 and a corresponding summary of their characteristics in Table 4.1. Note that averages 

are not given for passing maneuver types with less than three observations. Vehicle positions 

during passing maneuvers on segments of the Parks (Observation Period 1 and 2), Seward, and 

Sterling highways can be seen in Figure 4.2 through Figure 4.5, respectively. 

 

Figure 4.1 Observed passing maneuver type by field site location 

 

Table 4.1 Real-world passing maneuver summary statistics 

 
Parks 

Highway (1) 

Parks 

Highway (2) 

Seward 

Highway 

Sterling 

Highway 

 Passing Maneuvers Observed 23 11 18 7 

Passing Maneuver Characteristics (mph)  

All Observations 
  

 Average Max Vehicle Speed – Passing  74.3 72.1 65.2 65.3 

 SD of Max Vehicle Speed – Passing  6.9 7.3 4.9 3.9 

 Average Initial Speed – Passing  69.2 70.1 58.1 57.3 

 Average Final Speed – Passing 77.2 78.4 64.9 66.2 

 Average Initial Speed – Passed  67.4 66.2 56.4 56.7 

 SD of Initial Vehicle Speed – Passed  5.5 4.4 3.5 3.2 

Passing Maneuver Characteristics (mph) 

Early Initiated Passes 
  

 Average Max Vehicle Speed – Passing  77.4 + -- 67.2 

 SD of Max Vehicle Speed – Passing  3.1 + -- 3.2 

 Average Initial Speed – Passing  71.1 + -- 59.7 

 Average Final Speed – Passing 77.2 + -- 66.9 

 Average Initial Speed – Passed  67.5 + -- 55.8 

 SD of Initial Vehicle Speed – Passed  2.8 + -- 2.7 
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Parks 

Highway (1) 

Parks 

Highway (2) 

Seward 

Highway 

Sterling 

Highway 

 Passing Maneuvers Observed 23 11 18 7 

Passing Maneuver Characteristics (mph)  

Late-finish Passes 
  

 Average Max Vehicle Speed – Passing  76.2 -- 67.7 --  

 SD of Max Vehicle Speed – Passing  4.7 -- 3.8 --  

 Average Initial Speed – Passing  67.3 -- 59.2 --  

 Average Final Speed – Passing 76.3 -- 64.5 --  

 Average Initial Speed – Passed  65.1 -- 58.4 --  

 SD of Initial Vehicle Speed – Passed  3.3 -- 2.9 --  

 

The Parks Highway segment had the highest percentage of early-start passing maneuvers, while 

the Seward Highway had the highest percentage of late-finish passes. Average speeds of the 

passing and passed vehicles tended to be much higher than the average speeds assumed in the 

AASHTO standards. The difference in speeds between the passing vehicle (taken as the max 

speed reached during the passing maneuver) and the vehicle being passed (speed at the initiation 

of the passing event) varied depending on the type of passing maneuver. For early-start passes, 

the difference was about 7.5 mph on average. For late-finish passes, the difference was closer to 

9 mph. For compliant-type passes, the difference varied by location, as low as 6 mph average for 

the Parks Highway and 9 mph average for the Sterling and Seward highways. The standard 

deviation of speeds for compliant passes was larger than that of late- and early-type passes. 

In general, drivers who executed compliant-type passing maneuvers tended to occupy the 

opposing lane for less time (x̅ = 1268 feet) than those who executed late- and early-type passing 

maneuvers (x̅ = 1413 feet and x̅ = 1382 feet, respectively). However, only the late and compliant 

passing maneuvers exhibited a statistically significant difference (p = 0.0474) when comparing 

across all sites (see Figure 4.6). When comparing within sites, this difference between late- and 

compliant-type passing maneuvers was not exhibited at the Seward Highway section.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.2 Vehicle position during (a) all, (b) early-start, (c) compliant, and (d) late-finish 

passing maneuvers on Parks Highway segment (Observation Period 1) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.3 Vehicle position during (a) all, (b) early-start, (c) compliant, and (d) late-finish 

passing maneuvers on Parks Highway segment (Observation Period 2) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.4 Vehicle position during (a) all, (b) early-start, (c) compliant, and (d) late-finish 

passing maneuvers on Seward Highway segment  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.5 Vehicle position during (a) all, (b) early-start, (c) compliant, and (d) late-finish 

passing maneuvers on Sterling Highway segment 
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Figure 4.6 Site comparisons of distance spent in opposing lane while executing passing 

maneuver by execution type (early, compliant, and late) 

4.2. Driving Simulator 

The following sections provide a comparison of the passing locations under dashed centerline 

(first stage) and field-matched centerline (second stage) conditions. First stage results, including 

a logistic model of driver passing choice, characterization of passing maneuvers, and analysis of 

passing safety under different geometric conditions are then presented, followed by a discussion 

of the causal effects of a guardrail on passing behavior and collision avoidance. 

4.2.1. Participant Information 

Seventy-two participants were recruited to complete simulation testing for both stages. Table 4.2 

is a summary of participants’ demographics. 

Table 4.2 Driving simulator participants’ demographics 

  1st Stage 2nd Stage 

Age 

 Minimum 18 18 

 Maximum 60 78 

 Mean 27.5 28.6 

Driving Experience 

 Minimum 3 2 

 Maximum 45 60 

 Mean 11.5 13.2 

Sex 

 Male 16 27 

 Female 8 21 

Marital Status 

 Single 19 34 

 Married 5 14 
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4.3. Passing Locations 

To examine passing behavior along the existing roadway alignment, centerline roadway 

geometry provided by the AKDOT&PF was utilized and incorporated into the driving simulator 

data files. Although the study design was limited by the constraints of the driving simulator 

parameters (i.e., static speeds for vehicles being passed and of the oncoming vehicles), this 

research sought to pinpoint the specific locations along the roadway alignment where passes 

occurred. Each participant encountered a dashed yellow centerline stripe for the first stage of the 

experiment so that a pass could be initiated at any location where the driver felt comfortable 

doing so. The participants encountered striping as it occurs on the actual roadway alignment for 

the second stage of the experiment to examine the effects of striping on passing location. 

The initiation location of each completed and aborted passing maneuver was plotted on plan-

view and profile-view plots of each highway section, the results of which are shown in Figure 

4.7 to Figure 4.12. Part (a) of each figure shows the pass attempts in the first stage (unrestricted 

passing), and part (b) of each figure shows the pass attempts in the second stage. The gray-

highlighted portion of the first stage plots corresponds to the shortened sections tested in the 

second stage. The passing zones in the second stage are indicated by wider centerlines in the 

plots. Each figure identifies the horizontal curvature (shown in the top section in the plan view) 

and the accompanying vertical curvature (shown in the bottom section in the profile view) for 

both the northbound and southbound directions. The coordinates indicated in each figure 

correspond to how the road alignment was positioned in the simulator files and are arbitrary in 

terms of real-world position; however, the scale is correct and units are in feet. 

On the Parks Highway and Sterling Highway test sections, there is no clear relationship between 

horizontal curvature and pass attempt locations, though the attempts appear to cluster 

downstream from crest vertical curves. In contrast, the pass attempts appear to cluster 

downstream from horizontal curves along the Seward Highway test section, as the vertical 

curvature on this section is minimal. These patterns are consistent with the expectation that 

drivers are less likely to pass when sight distance is restricted. Sight distance is primarily 

restricted by crest curves on the Parks Highway and Sterling Highway test sections, and is 

primarily restricted by the horizontal curves on the Seward Highway test section. 
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(a) 

 

 
(b) 

 

Figure 4.7 Driver passing locations on Seward Highway (NB) during (a) first stage and (b) 

second stage
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(a) 

 

 
(b) 

 

Figure 4.8 Driver passing locations on Seward Highway (SB) during (a) first stage and (b) 

second stage
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(a) 

 

 
(b) 

 

Figure 4.9 Driver passing locations on Parks Highway (NB) during (a) first stage and (b) second 

stage
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(a) 

 

 
(b) 

 

Figure 4.10 Driver passing locations on Parks Highway (SB) during (a) first stage and (b) 

second stage
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(a) 

 

 
(b) 

 

Figure 4.11 Driver passing locations on Sterling Highway (NB) during (a) first stage and (b) 

second stage
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(a) 

 

 
(b) 

 

Figure 4.12 Driver passing locations on Sterling Highway (SB) during (a) first stage and (b) 

second stage
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4.4. Data Analysis – First Stage 

4.4.1. Passing Choice Logistic Model 

A mixed-effects logistic regression model was developed to infer the effects of geometric 

configuration on the choice to pass. Situational variables and driver characteristics variables 

were included in the model to control for variability. The geometric variables included the slope, 

horizontal curvature, and vertical curvature, which were recorded as the change in curvature 

(heading in degrees and slope in percent) in the previous and subsequent 500-foot and 1000-foot 

segments of road. The 1000-foot length was chosen because 1000 feet was the approximate 

average distance that a passing maneuver took to complete, and the 500-foot distance was chosen 

to quantify how much of the curvature occurred in the early or late portions of the maneuver. 

Situational variables included the following distance (i.e., distance to impeding vehicle), distance 

to sight obstruction, and whether the sight obstruction was a natural sight obstruction or an 

oncoming vehicle. Driver characteristics variables included demographic variables and average 

speed. Participant identification (PID) was included in the model as a random effect. The 

variables that were considered for the model are summarized in Table 4.3. The distance to sight 

obstruction variable was transformed by taking the square root, which resulted in an improved 

model fit. 

Table 4.3 Description of variables considered for passing choice logistic model 

Variable Description 

event  

(dependent variable) 

1 = pass attempted; 0 = otherwise 

Sterling 1 = Sterling; 0 = otherwise 

Seward 1 = Seward; 0 = otherwise 

right500,  

left500 

 

change in heading in 500 feet of road from driver’s location 

[degrees]; if < 0 absolute value was taken and this was left variable, 

if > 0 then right variable; 0 = if road was straight or curved in 

opposite direction 

right1000,  

left1000 

change in heading in 1000 feet of road from driver’s location 

[degrees]; if < 0 absolute value was taken and this was left variable, 

if > 0 then right variable; 0 = if road was straight or curved in 

opposite direction 

sag500,  

crest500 

 

change in slope in 500 feet of road from drive’s location; if < 0 

absolute value was taken and this was crest variable, if > 0 then sag 

variable; 0 = if road was flat or curved in opposite direction 

sag1000,  

crest1000 

change in slope in 1000 feet of road from driver’s location; if < 0 

absolute value was taken and this was crest variable, if > 0 then sag 

variable; 0 = if road was flat or curved in opposite direction 

up, 

down 

slope at driver’s location; if < 0 absolute value was taken and this 

was down variable, if > 0 then up variable; 0 = if road was level or 

sloped in opposite direction 

b_right500,  

b_left500 

change in heading in 500 feet of road previous to driver’s location 

[degrees] 
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Table 4.3 (cont.) Description of variables considered for passing choice logistic model 

Variable Description 

b_right1000,  

b_left1000 

change in heading in 1000 feet of road previous to driver’s location 

[degrees] 

b_sag500,  

b_crest500 

change in slope in 500 feet of road previous to driver’s location 

b_sag1000,  

b_crest1000 

change in slope in 1000 feet of road previous to driver’s location 

obdist distance from driver to sight distance obstruction (either natural 

obstruction or oncoming vehicle) [feet]; defined as minimum 

between distance to oncoming vehicle (dist) and sight distance (SD)  

obtype type of sight distance obstruction: 1 = oncoming vehicle (dist < 

SD); 0 = natural sight distance obstruction (SD < dist) 

avg_speed driver average speed while traveling in own lane unimpeded 

sex 1 = male; 0 = female 

mar_stat 1 = married; 0 = single 

 

The final model was chosen based on backwards elimination by removing the variables with the 

highest probability of not meeting the chosen significance criterion (p < 0.10). The 500-foot and 

1000-foot segment alternatives of the horizontal and vertical curvature variables were compared, 

and the more significant alternative was chosen to remain in the model. The 500-foot alternatives 

were more significant for the horizontal curvature variables and the previous sag curvature, while 

the 1000-foot alternatives were more influential for the vertical curvature. The final model is 

summarized in Table 4.4. 

 

Table 4.4 Summary of final logistic model 

Variable Scaled Coefficient Standard Error z-value 

Intercept -0.729 0.205 -3.558 *** 

Seward -0.987 0.187 -5.274 *** 

up -0.390 0.086 -4.524 *** 

right500 -0.182 0.088 -2.065 * 

left500 0.170 0.076 2.229 * 

crest1000 -0.781 0.139 -5.626 *** 

sag1000 0.188 0.092 2.047 * 

b_sag500 -0.249 0.083 -3.004 ** 

follow -0.679 0.098 -6.925 *** 

sqrt(obdist) 1.293 0.099 13.020 *** 

obtype -0.531 0.168 -3.162 ** 

avg_speed 1.156 0.176 6.566 *** 

age -0.509 0.183 -2.776 ** 

Random effects:  

Model fit: 

Significance: 

(Intercept | PID) Variance = 0.627, Standard Deviation = 0.792 

Null LL = -907.7, Final LL = -606.6, McFadden's R2 = 0. 332 

 * = (p < 0.05)   ** = (p < 0.01)   *** = (p < 0.001) 
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The model showed significant effects for the highway section, slope, horizontal curvature, 

vertical curvature, following distance, distance to sight obstruction, and type of sight obstruction, 

as well as the age and average speed of the driver. Drivers were less likely to pass on the Seward 

Highway section than on the Parks Highway or Sterling Highway sections. The reason for this is 

unclear, although there are several possible contributing factors. First, it is possible that the 

highway section variable interacts with some of the other geometric variables in complex ways 

that are not described by this model. Other iterations of the model showed weak interactions 

between the section variables and geometric variables that were discarded because the effects 

were not shown to be statistically significant, although the cumulative effect of these interactions 

may be significant. Additionally, 41.7% of participants reported that the cliff decreased their 

likelihood to choose to pass, some due to the sight distance restriction and others due to 

discomfort with driving between a cliff and a body of water. 

Drivers were less likely to pass when the road turned to the right in the next 500 feet than if the 

road was straight, and they were more likely to pass if the road turned left than if the road was 

straight. Two factors likely contribute to a preference for passing on left-hand curves; first, 

passing on a left-hand curve flattens the overtaking vehicle’s path and shortens the path length 

through the curve, and second, the impeding vehicle often obstructs the sight distance for the 

overtaking driver on straight sections and right-hand curves. 

Drivers were less likely to pass when there was a crest curve within the next 1000 feet than if the 

road was flat, and they were more likely to pass if the road had a sag curve within the next 1000 

feet than if the road was flat. Drivers were less likely to pass if there was a sag curve within the 

previous 500 feet than if the road was flat. Finally, drivers were less likely to pass when they 

were traveling uphill than if they were traveling on level road or downhill. 

Of course, drivers were also more likely to pass as the distance to the sight obstruction increased, 

and were less likely to pass if the sight obstruction was a vehicle than if it was a natural sight 

restriction. Drivers were more likely to pass as the follow distance decreased, which makes sense 

because drivers close the gap when they are preparing to pass. Finally, drivers were more likely 

to pass if their average speed was higher and less likely to pass as their age increased. 

4.4.2. Passing Maneuver Characterization by Geometric Configuration 

The vehicle speed when abreast of the impeding vehicle, total time spent in the opposing lane, 

total distance traveled in the opposing lane, following distance at the initiation of the pass, and 

distance from the impeding vehicle at the end of the maneuver were calculated for each passing 

maneuver (see Figure 4.13). Ti is the time when the vehicle breaches the centerline, Ta is the time 

when the vehicle is abreast of the impeding vehicle, and Tf is the time when the vehicle returns 

fully to its own lane. Speed abreast is the speed at Ta, total time spent in opposing lane is the 

time in seconds between Ti and Tf, the distance traveled is the distance traveled between times Ti 

and Tf, following distance at the initiation is di, and distance from the impeding vehicle at the 

end of the maneuver is represented by df. 
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Figure 4.13 Passing maneuver characteristics 

The data were subdivided into geometric configurations based on the change in heading (left, 

right, and straight) and slope (sag, crest, and flat) in the 500-foot and 1000-foot segments of road 

following the initiation of each pass. Pairwise comparisons of the means of each variable for 

each geometric configuration were performed using a t-test at the 95% confidence level. The 

results are summarized in Table 4.5 and Table 4.6; significant differences are denoted as 

indicated in the footnotes of each table. For example, the mean speed when the road was straight 

for at least 500 feet from pass initiation, 64.9 mph, is statistically significantly greater than the 

mean speed when the road curved to the right within 500 feet from pass initiation, 63.5 mph, 

which is indicated by an asterisk (*). Likewise, the mean speed when the road was straight for at 

least 1000 feet from pass initiation, 65.4 mph, is statistically significantly greater than the mean 

speed when the road curved to the left within 1000 feet from pass initiation, 63.8 mph, which is 

indicated by a cross (†). 

Horizontal curvature affected every measure that was compared. During passing maneuvers, 

drivers tended to reach higher speeds when passing on straight sections of road than on curves. 

These differences were small (less than 2 mph, on average), so little practical significance was 

gained. Vehicles were in the oncoming lane for shorter times and distances on average when the 

road curved to the right than when the road was straight or curved to the left. This difference 

corresponds to a substantial reduction in distance between the vehicle and the passed vehicle 

when the pass was finished and the vehicle returned to its own lane, which averaged 176.7 feet 

on left curves, 188.8 feet on straight sections, and 148.2 feet on right curves. Similarly, when the 

roadway curved to the right within 500 feet of initiation of the pass, the average following 

distance at the initiation of the pass was 101.7 feet compared with 115.4 feet when the road was 

straight. 

When the road had a sag curve within 500 feet of the pass initiation, the average speed of the 

vehicle while abreast of the impeding vehicle was 65.8 mph compared with 63.6 mph when the 

road was flat or had a crest curve. The higher speed on sag curves corresponds to less time spent 

and distance traveled in the opposing lane. Each of these differences only occurred when the sag 

curve was in the early portion (less than 500 feet from initiation) of the passing maneuver and 

diminished if the sag curve was within 1000 feet of the initiation of the maneuver. 
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Table 4.5 Passing maneuver characteristics on horizontal curves 

  

500 ft 1000 ft 

Left  Straight  Right  Left  Straight  Right  

N=218 N=256 N=143 N=289 N=151 N=177 

Vehicle Speed  
(when abreast, in mph) 

64.0 64.9* 63.5 63.8 65.4† 64.0 

Total Time Spent  
(opposing lane, in seconds) 

11.4* 11.1 10.6 11.4* 11.3* 10.4 

Total Distance Traveled  
(opposing lane, in feet) 

1035.2* 1024.1* 957.6 1036.5* 1049.8* 941.9 

Finish Distance  
(to impeding vehicle, in feet) 

174.2* 178.7* 152.8 176.7 188.8 148.2 

Initial Follow Distance  
(to impeding vehicle, in feet) 

112.0 115.4* 101.7 110.5 117.1 106.6 

Significant (p < 0.05) differences indicated by: * > Right, † > Left 

 

 

Table 4.6 Passing maneuver characteristics on horizontal curves 

4.4.3. Passing Safety by Geometric Configuration 

The most important variable regarding passing safety is the final time to contact (TTC), which is 

the most direct measure of how close a driver executing a passing maneuver comes to colliding 

with a vehicle in the oncoming lane. A common criterion used to determine whether a pass is 

excessively risky is if the final TTC is less than 3 seconds (Farah, et al., 2009). The proportion of 

passes that ended in an unsafe time to contact was calculated for each section. The most 

important factor influencing the outcome of a passing maneuver is the distance to the oncoming 

vehicle when the driver chooses to initiate the pass.  

To compare passing safety in this experiment, the average final TTC, proportion of unsafe 

passes, and average initial distance to an oncoming vehicle were recorded for each pass, and a 

pairwise comparison was performed by geometric configuration. A subset of the data for which 

  

500 ft 1000 ft 

Crest Flat Sag Crest Flat Sag 

N=158 N=286 N=173 N=179 N=161 N=277 

Vehicle Speed  
(when abreast, in mph) 

63.6 63.6 65.8*† 64.3 63.5 64.7 

Total Time Spent  
(opposing lane, in seconds) 

11.5‡ 11.3‡ 10.4 11.2 11.4 10.9 

Total Distance Traveled  
(opposing lane, in feet) 

1037.8‡ 1024.0‡ 970.8 1013.6 1035.0 999.0 

Initial Follow Distance  
(to impeding vehicle, in feet) 

109.6 108.3 116.7 110.0 106.6 114.2 

Finish Distance  
(to impeding vehicle, in feet) 

170.8 173.3 169.1 168.2 178.7 169.4 

Significant (p < 0.05) differences indicated by:* > Flat, † > Crest, ‡ > Sag 
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the initial sight distance is greater than 1000 feet, which is the minimum passing sight distance 

for a 60 mph highway recommended by the MUTCD, was also compared to control for unsafe 

events that would have occurred in no-passing zones had the centerline been striped per MUTCD 

guidance. The mean values of the initial distance and TTC variables were compared using a t-

test, and the proportions of unsafe passes were compared using a chi-square contingency test. All 

tests were performed at the 95% confidence level. The results are summarized in Table 4.7 and 

Table 4.8; significant differences are denoted as indicated in the footnotes of each table. 

Table 4.7 Passing safety characteristics on horizontal curves 

  
500 ft 1000 ft 

Left  Straight  Right  Left  Straight  Right  

Initial Distance α  
(to oncoming vehicle, in feet) 

3846.4 4008.9 3970.1 3844.1 4035.9 4025.9 

Initial Distance β 
(SD > 1000 feet, in feet) 

3903.9 4019.2 4011.5 3882.0 4052.4 4072.8 

Time to Contact α 
(in seconds) 

10.6 12.8† 12.1† 10.7 13.1† 12.7† 

Time to Contact β 
(SD > 1000 feet, in seconds) 

11.0 12.4 12.4 10.9 12.6† 13.0† 

Proportion of Unsafe Passes α 
(defined as TTC < 3 seconds) 

0.106 0.116 0.089 0.115 0.110 0.089 

αN = (217,249,135), (287,145,169) 
βN = (195, 237, 123), (264, 137, 154) 

Significant (p < 0.05) differences indicated by: * > Right, † > Left 

Table 4.8 Passing safety characteristics on horizontal curves 

  
500 ft 1000 ft 

Crest Flat Sag Crest Flat Sag 

Initial Distance α  
(to oncoming vehicle, in feet) 

3858.2 3975.0 3963.5 3848.2 4159.4†‡ 3875.2 

Initial Distance β 
(SD > 1000 feet, in feet) 

3932.5 3993.5 3984.7 3859.9 4213.9†‡ 3908.5 

Time to Contact α 
(in seconds) 

10.9 11.6 13.2† 11.1 12.5 11.9 

Time to Contact β 
(SD > 1000 feet, in seconds) 

11.1 11.7 12.9 11.2 12.7† 11.9 

Proportion of Unsafe Passes α 
(defined as TTC < 3 seconds) 

0.109 0.125 0.072 0.124 0.096 0.101 

αN = (156, 279, 166), (177, 157, 267) 
βN = (127, 268, 160), (160, 150, 245) 

Significant (p < 0.05) differences indicated by:  

* > Flat, † > Crest, ‡ > Sag 

When the road was flat for at least 1000 feet from pass initiation, the average distance to the 

oncoming vehicle at initiation was 4159.4 feet compared with 3848.2 feet when there was a crest 

curve and 3875.2 feet when there was a sag curve. When the sight distance was more than 1000 

feet, the average time to contact of 12.7 seconds was higher when the road was flat compared 

with 11.2 seconds when the road had a crest curve, which corresponds to the higher initial 
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distance. When the road had a sag curve within 500 feet of initiation of the pass, the time to 

contact averaged 13.2 seconds, which was higher than the average of 10.9 seconds when there 

was a crest curve in the early portion of the pass, although this difference diminished when sight 

distance was greater than 1000 feet. The higher average time to contact in both of these cases did 

not correspond to a significant difference in the proportions of unsafe passes. 

4.5. Data Analysis – Second Stage 

4.5.1. Effects of Guardrails on Passing Behavior 

The effects of guardrails on passing behavior were examined by comparing the number and 

characteristics of pass attempts on the Seward Highway section only in order to isolate the 

effects of the guardrail from the confounding effects of geometry. To assess how the presence of 

a guardrail affects a driver’s choice to pass, the number of pass attempts and the proportion of 

completed versus aborted passes were compared between conditions. To assess how the presence 

of a guardrail affects the safety outcomes of passes, the average TTC for attempted and 

completed passes and the proportion of safe (TTC > 3 seconds) versus unsafe (TTC < 3 seconds) 

passes were compared between conditions. The results are summarized in Table 4.9; as shown, 

none of the probabilities (p) were significant at a 0.05 significance level. 

Table 4.9 Effects of guardrail on passing behavior 

  
Guardrail 

p 
No Yes 

P
as

s 
A

tt
em

p
ts

 Attempts/ 

Participant 
2.61 2.45 0.80 

Completed 72 74 
0.16 

Aborted 14 7 

TTC (s) 3.53 3.48 0.88 

C
o
m

p
le

te
d
 P

as
se

s Passes/ 

Participant 
2.40 2.47 0.82 

Safe 32 31 
0.87 

Unsafe 40 43 

TTC (s) 3.05 3.10 0.88 

 

For the 33 participants that attempted to pass on the Seward Highway section, the average 

number of attempts with no guardrail present was 2.61, and the average number of attempts with 

a guardrail present was 2.45. These averages were compared with a paired t-test and were not 

found to be different at a significance of p < 0.05. In the no-guardrail condition, 72 passes were 

completed and 14 were aborted; in the presence of a guardrail, 74 passes were completed and 7 

were aborted. These proportions were compared using Fisher’s exact test and were not found to 

be different at a significance of p < 0.05. The average final TTC for pass attempts in the no-

guardrail condition was 3.53 seconds, and the average final TTC for pass attempts in the 
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presence of a guardrail was 3.48 seconds. These averages were compared with a t-test and were 

not found to be different at a significance of p < 0.05. 

For the 30 participants that completed at least one pass on the Seward Highway section, the 

average number of completed passes with no guardrail present was 2.40, and the average number 

of passes with a guardrail present was 2.47. These averages were compared with a paired t-test 

and were not found to be different at a significance of p < 0.05. In the no-guardrail condition, 32 

passes were safe and 40 were unsafe; in the presence of a guardrail, 31 passes were safe and 43 

were unsafe. These proportions were compared using Fisher’s exact test and were not found to 

be different at a significance of p < 0.05. The average final TTC for completed passes in the no-

guardrail condition was 3.05 seconds, and the average final TTC for passes in the presence of a 

guardrail was 3.10 seconds. These averages were compared with a t-test and were not found to 

be different at a significance of p < 0.05. 

4.5.2. Effects of Guardrails on Collision Avoidance 

The effects of guardrails on collision avoidance were examined by comparing the proportion of 

drivers that collided with the oncoming vehicle and the distance that the drivers moved toward 

the edge of the roadway (measured from the center of the driver’s travel lane) under the 

conditions of no guardrail and the presence of a guardrail. The results from the collision 

avoidance simulation are summarized in Table 4.10. 

 

Table 4.10 Effects of guardrail on collision avoidance 

  
Guardrail 

p 
No Yes 

Collision 4 16 
0.0005 

No Collision 20 8 

Lane Deviation (ft) 7.53 4.71 0.01 

 

In the no-guardrail condition, 4 participants collided with the oncoming vehicle and 20 

participants avoided a collision; in the presence of a guardrail, 16 participants collided with the 

oncoming vehicle and 8 participants avoided a collision. These proportions were compared using 

Fisher’s exact test and were significantly different at a significance of p < 0.05. In the no-

guardrail condition, the average lane deviation was 7.53 feet, and in the presence of a guardrail, 

the average lane deviation was 4.71 feet. These averages were compared using the Mann-

Whitney U test and were significantly different at a significance of p < 0.05. 

These results indicate that the presence of guardrail may increase the occurrences of head-on 

collisions because drivers do not correctly perceive the risks involved in colliding with a vehicle 

versus colliding with a guardrail. While it is clear that colliding with guardrail is preferable given 

the undesirable options available, drivers may not have time to process the risks with the urgency 

required to avoid a collision. 
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CHAPTER 5. CONCLUSIONS 

This study presented and evaluated the effects of roadway curvature on passing maneuvers along 

real-world rural two-lane highways in Alaska using in-field observations of passing maneuvers 

and a driving simulator. The following discussion includes the practical implications of the 

passing behavior and collision avoidance portions of this study as well as the study’s limitations. 

5.1. Passing Behavior 

The passing maneuver is one of the most complex maneuvers in rural highway driving and is 

consequently difficult to assess. Existing models are based primarily on vehicle speeds and 

available gaps, and fail to directly account for road geometry. Previous studies have shown that 

roadway geometry affects driver willingness to accept a gap and initiate a pass, although these 

studies did not consider vertical curvature or specify directionality in the horizontal curvature. 

The present study showed that horizontal curvature, vertical curvature, and slope have significant 

effects on a driver’s choice to pass, but the presence of a guardrail was not found to have a 

significant effect. The in-field study corroborates previous studies that indicate higher rates of 

speed undertaken by passing and impeding vehicles than is assumed in the AASHTO and 

MUTCD standards. 

The results of the field study showed that on all three highway segments (Parks, Seward, and 

Sterling), the speeds of passing vehicles are approximately 10 mph over the posted speed limit. 

The average initial speed of the vehicles being passed were approximately 2 mph over the speed 

limit. Standard deviations for both passing and impeding vehicles ranged from 3 mph to 7 mph. 

This has significant implications for the design of passing zones, as the AASHTO and MUTCD 

standards assume that the speed of passing vehicles does not exceed the posted speed limit. 

Furthermore, the field study revealed a significant number of early-start and late-finish passes, 

where a portion of the passing maneuver occurred outside of the designated passing area. The 

rate of early-start passes was higher for the Parks Highway segment; the rate of late-finish passes 

was higher for the Seward Highway segment. Early-start and late-finish passes tended to occupy 

the opposing lane for more time than passes that were compliant and occurred completely within 

the confines of the passing zone.  

The results of the simulator study have practical implications for microsimulation of rural 

highways, highway design, and highway safety. After the effects of geometric variables on 

passing choice are better understood and modeled more precisely, microsimulation can 

incorporate these effects to model more accurately the expected locations of passes. The findings 

likely have ramifications for highway design because highway capacity could be modeled more 

effectively, and the locations of passing zones and passing lanes could be designed accordingly. 

Additionally, the ability to accurately predict where passing is most likely to occur on a section 

of highway could have implications for prioritization of safety treatments and signage. 

Horizontal and vertical curvature were both shown to have significant effects on the 

characteristics of passing maneuvers including the speed of the passing vehicle, the total time 

and distance of the maneuvers, and the distance between the passing vehicle and the impeding 

vehicle at initiation and termination of the maneuvers. These differences may have implications 

for capacity and safety analysis of rural two-lane highways. The implementation of improved 

models of vehicle trajectories during passing maneuvers may lead to more accurate 

microsimulation models of rural two-lane highways and would enable improved capacity 
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analyses, which could inform the design of passing zones and passing lanes. The distance to the 

impeding vehicle at the initiation and termination of a passing maneuver may have safety 

implications with regard to the risk of rear-end collisions and same-direction sideswipe collisions 

of the passing and impeding vehicles. 

Despite differences in passing choice and passing maneuvers, roadway geometry was not shown 

to significantly affect the safety outcomes of passes. Although there were conditions in which 

average time to contact was different (e.g., lower when the road curved to the left than when 

straight or curved to the right, and higher when the road had a sag curve than when flat or had a 

crest curve), none of these differences corresponded to a significantly higher proportion of passes 

ending with an unsafe time to contact. The presence of a guardrail was also not shown to have a 

significant effect on the proportion.  

5.2. Collision Avoidance 

The results of the simulated collision avoidance experiment indicate that the presence of a 

guardrail may increase the occurrences of head-on collisions because drivers do not correctly 

perceive the risks involved in colliding with a vehicle versus colliding with guardrail. While it is 

clear that colliding with a guardrail is preferable given the undesirable options available, drivers 

may not have time to process the risks with the urgency required to avoid a collision. 

This finding has implications for safety analysis of rural two-lane highways. If the presence of a 

guardrail significantly impedes the ability of drivers to safely avoid head-on collisions, this effect 

should be taken into account in the prioritization of safety projects. Though not tested as part of 

this study, safety features such as centerline rumble strips or centerline barriers may have a 

greater impact in reducing the prevalence of head-on collisions and reducing the average severity 

of collisions on roadway sections with guardrails; the use of additional signage (refer to the 

MUTCD, Chapter 2B.28 and Chapter 2C.45) is also recommended for consideration. This 

finding may have implications for lane width, shoulder width, and the lateral placement of the 

guardrail, but more research should be conducted to determine whether the impediment 

diminishes when the guardrail is farther from the centerline. 

5.3. Study Limitations 

One limitation of this study is that the orientation of the cameras in the field made it difficult or 

impossible to see if there was an oncoming vehicle in the opposing lane when a passing 

maneuver occurred, and if there was an oncoming vehicle, what its location was as the passing 

vehicle executed the passing maneuver. Without this information (effectively d3 in Equation 1), 

it would be imprudent to infer the total deviation from the design passing sight distances 

computed by AASHTO and MUTCD. However, the large difference between actual and 

assumed design speeds provides justification for local calibration. Another limitation of the field 

study is that for statistical validity, passing maneuvers were only categorized into compliant, 

early-start, and late-finish passes. No distinction was made between passes that were “on the fly” 

(i.e., a flying pass where the passing vehicle initiated the pass without having spent some 

previous amount of time following behind the impeding vehicle at a lower rate of speed) and 

passes that were delayed, requiring the passing vehicle to accelerate to passing speed to overtake 

the impeding vehicle. Further, no distinction was made between passes that included only one 

impeding vehicle and passes that overtook several vehicles in one maneuver. However, only a 
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few cases fell into each of these groups (i.e., flying passes and passing multiple vehicles), and 

their characteristics were not significantly different enough from the other passing types to be 

concerned about exclusion or re-categorization.  

With respect to the simulator study, one limitation was that the use of real-world alignments for 

the simulation precluded an experimental design in which the horizontal and vertical curvature 

was systematically varied to isolate and infer effects. In doing so, variation was added to the test 

variables due to unknown interaction effects and possible order effects. An experiment with a 

track specifically designed with systematic changes in curvature should be conducted to validate 

and strengthen the results of this study.  

Considering that the data for the simulator portion of the study were collected in a virtual 

environment, the developed passing choice model may not have predictive validity on real-world 

alignments. However, since the purpose of the model was to infer effects rather than to make 

predictions, the results are likely valid in terms of relative validity. Field studies should be used 

to validate these findings and calibrate any models developed for prediction on real-world 

highways. Similarly, the differences in visual perception and vehicle controls in the simulation 

likely lead to differences in passing maneuvers in the simulator versus in real-world driving, so 

the passing maneuver characterization may lack absolute validity. Again, the purpose of the 

characterization was to compare the relative effects of curvature, and the results are likely valid 

in terms of relative validity. Finally, perceived risk in a driving simulator is far less than in real-

world driving because the consequences of crashing, which are potentially catastrophic in the 

real world, are nonexistent in the simulator. Therefore, the results of the passing safety and 

collision avoidance analyses should be viewed with these limitations in mind and should be 

validated using real-world data. 
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